AMD and JAM description

Akira Ono
Department of Physics, Tohoku University

Transport 2017: International Workshop on Transport Simulations for Heavy Ion Collisions under Controlled Conditions
FRIB-MSU, East Lansing, Michigan, USA, March 27-31, 2017

- JAM description
- AMD description

JAM Description

JAM: Jet AA Microscopic transport model
Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, PRC61 (2000) 024901.

- Applied to high-energy collisions ($1 \sim 158 \mathrm{~A} \mathrm{GeV}$)
- Hadron-Hadron reactions are based on experimental data and the detailed balance.
- No mean field (default).
- Some improvements were introduced for the study of low-energy collisions (~300 $\mathrm{MeV} / \mathrm{u}$) by Ikeno, Ono, Nara, Ohnishi, PRC93 (2016) 044612.

Collision judgment in JAM

- There is no time step. ($\Delta t=10$ or $20 \mathrm{fm} / c$ for output)
- Each pair is checked for the minimum distance condition in each c.m. frame.
- A collision occurs at an equal time in the c.m. frame. Therefore $t_{1} \neq t_{2}$.
- The order of collisions is determined by $\frac{1}{2}\left(t_{1}+t_{2}\right)$.
- At every collision, the collisions in future are recalculated, of course.

Frame of computation

Two-particle c.m. frame

Collision judgment in JAM

- There is no time step. ($\Delta t=10$ or $20 \mathrm{fm} / c$ for output)
- Each pair is checked for the minimum distance condition in each c.m. frame.
- A collision occurs at an equal time in the c.m. frame. Therefore $t_{1} \neq t_{2}$.
- The order of collisions is determined by $\frac{1}{2}\left(t_{1}+t_{2}\right)$.
- At every collision, the collisions in future are recalculated, of course.

The k5 variable

Each particle carries a variable k5(i).

- When a collision/reaction/decay occurred, the final particles are given a common collision ID.
$k 5(i)=43576, \quad k 5(j)=43576$
- Particles carrying the same k5 do not collide. if (k5(i).eq.k5(j)) cycle

Example:

- After $N+N \rightarrow N+\Delta$, this N and this Δ should not collide until one of them collide with some other particle.
- After $\Delta \rightarrow N+\pi$, this π should not be absorbed by this N until one of them collide with some other particle.

Box condition for the homework

Distance is redefined as suggested by the homework.

$$
\begin{aligned}
& \mathrm{dr}=\mathrm{r}(\mathrm{i})-\mathrm{r}(\mathrm{j}) \\
& \mathrm{dr}=\operatorname{modulo}(\mathrm{dr}+\mathrm{L} / 2, \mathrm{~L})-\mathrm{L} / 2
\end{aligned}
$$

We did not moved the coordinates $r(i)$ into the box.
$r(i)=$ modulo(r $(i), L)$
We only did
write(*,*) modulo(r(i), L)

This is actually a good test to check whether all the distances are redefined, though we passed the test at the first try.

Pauli blocking (Homework 1)

Pauli blocking based on the blocking factor

$$
\begin{gathered}
f_{i}=\frac{1}{2} \times 2^{3} \sum_{j \in \tau_{i}(j \neq i)} e^{-\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)^{2} / 4 L-L\left(\mathbf{p}_{i}-\mathbf{p}_{j}\right)^{2} / \hbar^{2}} \\
\tau_{i}=\text { proton or neutron for particle } i
\end{gathered}
$$

Homework 1 was very useful to check this Pauli blocking factor.

$N N \rightarrow N \Delta$ (Option Da)

$$
N+N \rightarrow N+\Delta(m)
$$

- m : mass of $\Delta\left(m_{N}+m_{\pi}<m<\sqrt{s}-m_{N}\right)$
- $p_{N}(s)$ and $p_{\Delta}(m, s)$: initial and final momenta in the center-of-mass system

$$
\begin{gathered}
\frac{d \sigma[N N \rightarrow N \Delta(m)]}{d m}=\frac{C_{I}}{p_{N} s} \frac{|\mathscr{M}|^{2}}{16 \pi} F(m) p_{\Delta}(m) \\
|\mathscr{M}|^{2}=A \frac{s \Gamma_{\Delta}^{2}}{\left(s-m_{\Delta}^{2}\right)^{2}+s \Gamma_{\Delta}^{2}}, \quad F(m)=\frac{2}{\pi} \frac{m m_{\Delta} \Gamma(m)}{\left(m^{2}-m_{\Delta}^{2}\right)^{2}+m_{\Delta}^{2} \Gamma(m)^{2}} \\
\Gamma(m)=\Gamma_{\Delta} \frac{m_{\Delta}}{m}\left(\frac{p_{\pi}(m)}{p_{\pi}\left(m_{\Delta}\right)}\right)^{3} \frac{1.2}{1+0.2\left(p_{\pi}(m) / p_{\pi}\left(m_{\Delta}\right)\right)^{2}} \\
m_{\Delta}=1.232 \mathrm{GeV}, \quad \Gamma_{\Delta}=0.118 \mathrm{GeV}, \quad \frac{A}{16 \pi}=64400 \mathrm{mb} \mathrm{GeV}^{2} \times R \\
C_{I}= \begin{cases}\frac{1}{4} & \text { for } n n \rightarrow n \Delta^{0}, n p \rightarrow p \Delta^{0}, n p \rightarrow n \Delta^{+}, p p \rightarrow p \Delta^{+} \\
\frac{3}{4} & \text { for } n n \rightarrow p \Delta^{-}, p p \rightarrow n \Delta^{++}\end{cases}
\end{gathered}
$$

We found that the sampling of m is not done accurately. (Phase III result will be updated.)

$$
R=\int_{m_{N}+m_{\pi}}^{\sqrt{s}-m_{N}} F_{3}\left(m^{\prime}\right) p_{\Delta}\left(m^{\prime}\right) d m^{\prime} / \int_{m_{N^{+}} m_{\pi}}^{\sqrt{s}-m_{N}} F\left(m^{\prime}\right) p_{\Delta}\left(m^{\prime}\right) d m^{\prime} \quad \text { with } \quad F_{3}(m)=\frac{2}{\pi} \frac{m^{2} \Gamma(m)}{\left(m^{2}-m_{\Delta}^{2}\right)^{2}+m^{2} \Gamma(m)^{2}}
$$

$N \Delta \rightarrow N N$ (Option Da)

Detailed balance, with the spin-isospin factor $g=2\left(1+\delta_{N N}\right)$

$$
\begin{gathered}
\sigma[N \Delta(m) \rightarrow N N]=\frac{1}{g} p_{N}^{2} \times \operatorname{detbal} \times \int_{m_{N}+m_{\pi}}^{\sqrt{s}-m_{N}} \frac{d \sigma\left[N N \rightarrow N \Delta\left(m^{\prime}\right)\right]}{d m^{\prime}} d m^{\prime} \\
\operatorname{detbal}=\frac{1}{p_{\Delta}(m) \int_{m_{N}+m_{\pi}}^{\sqrt{s}-m_{N}} p_{\Delta}\left(m^{\prime}\right) F\left(m^{\prime}\right) d m^{\prime}} \\
F(m)=\frac{2}{\pi} \frac{m m_{\Delta} \Gamma(m)}{\left(m^{2}-m_{\Delta}^{2}\right)^{2}+m_{\Delta}^{2} \Gamma(m)^{2}}
\end{gathered}
$$

The integrals of $p_{\Delta}\left(m^{\prime}\right) F\left(m^{\prime}\right)$ cancel so that we have

$$
\sigma[N \Delta(m) \rightarrow N N]=\frac{C_{I}}{g} \frac{1}{p_{\Delta}(m) s} \frac{|\mathscr{M}|^{2}}{16 \pi} p_{N}
$$

$\Delta \leftrightarrow N \pi$ (Option Pa)

$$
\Delta(\sqrt{s}) \rightarrow N+\pi
$$

$$
\begin{gathered}
\Gamma(\sqrt{s})=\Gamma_{\Delta} \frac{m_{\Delta}}{\sqrt{s}}\left(\frac{p_{\pi}(\sqrt{s})}{p_{\pi}\left(m_{\Delta}\right)}\right)^{3} \frac{1.2}{1+0.2\left(p_{\pi}(\sqrt{s}) / p_{\pi}\left(m_{\Delta}\right)\right)^{2}}, \\
m_{\Delta}=1.232 \mathrm{GeV}, \quad \Gamma_{\Delta}=0.118 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{gathered}
\Gamma\left[\Delta^{-}(\sqrt{s}) \rightarrow n+\pi^{-}\right]=\Gamma(\sqrt{s}) \\
\Gamma\left[\Delta^{0}(\sqrt{s}) \rightarrow p+\pi^{-}\right]=\frac{1}{3} \Gamma(\sqrt{s}) \\
\Gamma\left[\Delta^{0}(\sqrt{s}) \rightarrow n+\pi^{0}\right]=\frac{2}{3} \Gamma(\sqrt{s}) \\
\Gamma\left[\Delta^{+}(\sqrt{s}) \rightarrow p+\pi^{0}\right]=\frac{2}{3} \Gamma(\sqrt{s}) \\
\Gamma\left[\Delta^{+}(\sqrt{s}) \rightarrow n+\pi^{+}\right]=\frac{1}{3} \Gamma(\sqrt{s}) \\
\Gamma\left[\Delta^{++}(\sqrt{s}) \rightarrow p+\pi^{+}\right]=\Gamma(\sqrt{s})
\end{gathered}
$$

$N+\pi \rightarrow \Delta$

$$
\sigma[N \pi \rightarrow \Delta(\sqrt{s})]=\frac{\pi}{p_{\pi}(\sqrt{s})^{2}} \times \frac{4}{2 \times 1} \times \frac{\Gamma(\sqrt{s})^{2}}{\left(\sqrt{s}-m_{\Delta}\right)^{2}+\frac{1}{4} \Gamma(\sqrt{s})^{2}} \times \text { B.R. }
$$

There is no free parameter once the choice of $\Gamma(\sqrt{s})$ is made.

Antisymmetrized Molecular Dynamics (very basic version)

Equation of motion for the wave packet centroids Z

$$
\frac{d}{d t} \mathbf{Z}_{i}=\left\{\mathbf{Z}_{i}, \mathscr{H}\right\}_{\mathrm{PB}} \quad+\quad \text { (NN collisions) }
$$

$\left\{\mathbb{Z}_{i}, \mathscr{Z}\right\}_{\mathrm{pB}}$: Motion in the mean field

$$
\mathscr{H}=\frac{\langle\Phi(Z)| H|\Phi(Z)\rangle}{\langle\Phi(Z) \mid \Phi(Z)\rangle}+(\text { c.m. correction })
$$

H : Effective interaction (e.g. Skyrme force)

NN collisions

$$
\left.W_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{f}\right| V\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

- $|V|^{2}$ or $\sigma_{N N}$ (in medium)
- Pauli blocking

Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.

Antisymmetrized Molecular Dynamics (very basic version)

Wigner function for the AMD wave function

$$
\begin{gathered}
f_{\alpha}(\mathbf{r}, \mathbf{p})=8 \sum_{i \in \alpha} \sum_{j \in \alpha} e^{-2 v\left(\mathbf{r}-\mathbf{R}_{i j}\right)^{2}} e^{-\left(\mathbf{p}-\mathbf{P}_{i j}\right)^{2} / 2 \hbar^{2} v} B_{i j} B_{j i}^{-1}, \quad \alpha=p \uparrow, p \downarrow, n \uparrow, n \downarrow \\
\mathbf{R}_{i j}=\frac{1}{2 \sqrt{v}}\left(\mathbf{Z}_{i}^{*}+\mathbf{Z}_{j}\right), \quad \mathbf{P}_{i j}=i \hbar \sqrt{v}\left(\mathbf{Z}_{i}^{*}-\mathbf{Z}_{j}\right), \quad B_{i j}=e^{-\frac{1}{2}\left(\mathbf{Z}_{i}^{*}-\mathbf{Z}_{j}\right)^{2}}
\end{gathered}
$$

Equation of motion for the wave packet centroids Z

$$
\frac{d}{d t} \mathbf{Z}_{i}=\left\{\mathbf{Z}_{i}, \mathscr{H}\right\}_{\mathrm{PB}}+\quad \text { (NN collisions) }
$$

$\left\{\mathbf{Z}_{i}, \mathscr{H}\right\}_{\mathrm{pB}}$: Motion in the mean field

$$
\mathscr{H}=\frac{\langle\Phi(Z)| H|\Phi(Z)\rangle}{\langle\Phi(Z) \mid \Phi(Z)\rangle}+(\text { c.m. correction })
$$

H : Effective interaction (e.g. Skyrme force)

NN collisions

$$
\left.W_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{f}\right| V\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

- $|V|^{2}$ or $\sigma_{N N}$ (in medium)
- Pauli blocking

Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.

Transport code comparison

Understanding transport simulations of heavy-ion collisions at $100 A$ and 400 A MeV : Comparison of heavy-ion transport codes under controlled conditions

Jun Xu, ${ }^{1, *}$ Lie-Wen Chen, ${ }^{2, \dagger}$ ManYee Betty Tsang, ${ }^{3, \ddagger}$ Hermann Wolter, ${ }^{4,8}$ Ying-Xun Zhang, ${ }^{5, \|}$ Joerg Aichelin, ${ }^{6}$ Maria Colonna, ${ }^{7}$ Dan Cozma, ${ }^{8}$ Pawel Danielewicz, ${ }^{3}$ Zhao-Qing Feng, ${ }^{9}$ Arnaud Le Fèvre, ${ }^{10}$ Theodoros Gaitanos, ${ }^{11}$ Christoph Hartnack, ${ }^{6}$ Kyungil Kim, ${ }^{12}$ Youngman Kim, ${ }^{12}$ Che-Ming Ko, ${ }^{13}$ Bao-An Li, ${ }^{14}$ Qing-Feng Li, ${ }^{15}$ Zhu-Xia Li, ${ }^{5}$ Paolo Napolitani, ${ }^{16}$ Akira Ono, ${ }^{17}$ Massimo Papa, ${ }^{18}$ Taesoo Song, ${ }^{19}$ Jun Su, ${ }^{20}$ Jun-Long Tian, ${ }^{21}$ Ning Wang, ${ }^{22}$ Yong-Jia Wang, ${ }^{15}$ Janus Weil, ${ }^{19}$ Wen-Jie Xie, ${ }^{23}$ Feng-Shou Zhang, ${ }^{24}$ and Guo-Qiang Zhang ${ }^{1}$
J. Xu et al., PRC93 (2016) 044609.

Transport code comparison: Rapidity distribution

- Weaker stopping in QMD than in BUU?
- Too strong stopping in AMD
\Leftarrow The proper density distribution is not used becuase the physical-coordinate approximation is not good.

Physical coordinate approximation in AMD

AMD doesn't usually use test particles.
For some purposes, the distribution function is approximated by a simple summation of Gaussians.

$$
\begin{aligned}
f(\mathbf{r}, \mathbf{p}) & =8 \sum_{i=1}^{A} \sum_{j=1}^{A} e^{-\left(\mathbf{r}-\mathbf{R}_{i j}\right)^{2} / 2 \Delta x^{2}} e^{-\left(\mathbf{p}-\mathbf{P}_{i j}\right)^{2} / 2 \Delta p^{2}} B_{i j} B_{j i}^{-1} \\
& \approx 8 \sum_{k=1}^{A} e^{-\left(\mathbf{r}-\mathbf{R}_{k}\right)^{2} / 2 \Delta x^{2}} e^{-\left(\mathbf{p}-\mathbf{P}_{k}\right)^{2} / 2 \Delta p^{2}} \quad\left(\mathbf{R}_{k}, \mathbf{P}_{k}\right): \text { physical coordinates }
\end{aligned}
$$

- This physical-coordinate approximation is used in the traditional way of two-nucleon collisions in AMD.
Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.
- However, this approximation is not necessarily good
 enough in some cases.

Test particles for the AMD wave function

Wigner function for the AMD wave function

$$
\begin{aligned}
& f(\mathbf{r}, \mathbf{p})=8 \sum_{i=1}^{A} \sum_{j=1}^{A} e^{-\left(\mathbf{r}-\mathbf{R}_{i j}\right)^{2} / 2 \Delta x^{2}} e^{-\left(\mathbf{p}-\mathbf{P}_{i j}\right)^{2} / 2 \Delta p^{2}} B_{i j} B_{j i}^{-1} \\
& \mathbf{R}_{i j}=\frac{1}{2 \sqrt{v}}\left(\mathbf{Z}_{i}^{*}+\mathbf{Z}_{j}\right), \quad \mathbf{P}_{i j}=i \hbar \sqrt{v}\left(\mathbf{Z}_{i}^{*}-\mathbf{Z}_{j}\right), \quad B_{i j}=e^{-\frac{1}{2}\left(\mathbf{Z}_{i}^{*}-\mathbf{Z}_{j}\right)^{2}}, \quad \Delta x^{2}=\frac{1}{4 v}, \quad \Delta p^{2}=\hbar^{2} v
\end{aligned}
$$

Regarding $f(\mathbf{r}, \mathbf{p})$ as the probability distribution function, we randomly generate test particles $\left(\mathbf{r}_{1}, \mathbf{p}_{1}\right),\left(\mathbf{r}_{2}, \mathbf{p}_{2}\right), \ldots$ (1 test particle per nucleon)

- Density $\rho(r)$ for ${ }^{197} \mathrm{Au}$ (for test)
- Transport code comparison (for convenience)
- AMD + JAM (for pion production, Ikeno's talk)

- To improve NN collisions

Improved NN collisions

More faithful to the BUU collision term.

$$
\begin{aligned}
I_{\mathrm{coll}}=\int \frac{d \mathbf{p}_{2}}{(2 \pi \hbar)^{3}} \int d \Omega|\nu|\left(\frac{d \sigma}{d \Omega}\right)_{\nu}\{ & f\left(\mathbf{r}, \mathbf{p}_{3}\right) f\left(\mathbf{r}, \mathbf{p}_{4}\right)[1-f(\mathbf{r}, \mathbf{p})]\left[1-f\left(\mathbf{r}, \mathbf{p}_{2}\right)\right] \\
& \left.-f(\mathbf{r}, \mathbf{p}) f\left(\mathbf{r}, \mathbf{p}_{2}\right)\left[1-f\left(\mathbf{r}, \mathbf{p}_{3}\right)\right]\left[1-f\left(\mathbf{r}, \mathbf{p}_{4}\right)\right]\right\}
\end{aligned}
$$

(1) Generate test particles $\left(\mathbf{r}_{1}, \mathbf{p}_{1}\right),\left(\mathbf{r}_{2}, \mathbf{p}_{2}\right), \ldots,\left(\mathbf{r}_{A}, \mathbf{p}_{A}\right)$
(2) Collision attempt is judged by the Bertsch prescription, for each pair (i, j).

$$
2|\mathbf{r} \cdot \mathbf{v}|<\mathbf{v}^{2} \Delta t \quad \text { and } \quad \mathbf{r}^{2}-\frac{(\mathbf{r} \cdot \mathbf{v})^{2}}{\mathbf{v}^{2}}<\frac{\sigma}{\pi}, \quad\left(\mathbf{r}=\mathbf{r}_{i}-\mathbf{r}_{j}, \quad \mathbf{v}=\mathbf{v}_{i}-\mathbf{v}_{j}\right)
$$

$$
\left[1-f\left(\mathbf{r}_{i}, \mathbf{p}_{i}^{\prime}\right)\right]\left[1-f\left(\mathbf{r}_{j}, \mathbf{p}_{j}^{\prime}\right)\right], \quad \text { where } \quad \mathbf{p}_{i}^{\prime}=\mathbf{p}_{i}+\mathbf{q}, \quad \mathbf{p}_{j}^{\prime}=\mathbf{p}_{j}-\mathbf{q}
$$

Effect in rapidity distribution

Two directions of extension of AMD

Wave-packet splitting: Give fluctuation to each wave packet centroid, based on the single-particle motion.

$$
\begin{aligned}
\frac{d}{d t} Z=\{Z, \mathscr{H}\}_{\mathrm{PB}} & +(\text { NN Collision }) \\
& +(\text { W.P. Splitting })+(\text { E. Conservation })
\end{aligned}
$$

Ono, Hudan, Chibihi, Frankland, PRC66 (2002) 014603
Ono and Horiuchi, PPNP53 (2004) 501

At each two-nucleon collision, cluster formation is considered for the final state.
$\mathrm{N}_{1}+\mathrm{B}_{1}+\mathrm{N}_{2}+\mathrm{B}_{2} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$

$$
\left.W_{i \rightarrow f}=\frac{2 \pi}{\hbar}\left|\langle\mathrm{CC}| V_{N N}\right| \mathrm{NBNB}\right\rangle\left.\right|^{2} \delta(\mathscr{H}-E)
$$

Ono, J. Phys. Conf. Ser. 420 (2013) 012103
Ikeno, Ono et al., PRC 93 (2016) 044612

